Output Feedback Direct Adaptive Control for a Two-Link Flexible Robot Subject to Parameter Changes
نویسندگان
چکیده
Robots today have an ever growing niche. Many of today’s robots are required to perform tasks which demand high level of accuracy in end effector positioning. The links of the robot connecting the joints are large, rigid, and heavy. These manipulators are designed with links, which are sufficiently stiff for structural deflection to be negligible during normal operation. Also, heavy links utilize much of the joint motor’s power moving the link and holding them against gravity. Moreover the payloads have to be kept small compared to the mass of the robot itself, since large payloads induce sagging and vibration in the links, eventually bringing about uncertainty in the end effector position. In an attempt to solve these problems lightweight and flexible robots have been developed. These lightweight mechanical structures are expected to improve performance of the robot manipulators with typically low payload to arm weight ratio. The ultimate goal of such robotic designs is to accurate tip position control in spite of the flexibility in a reasonable amount of time. Unlike industrial robots, these robot links will be utilized for specific purposes like in a space shuttle arm. These flexible robots have an increased payload capacity, lesser energy consumption, cheaper construction, faster movements, and longer reach. However, link flexibility causes significant technical problems. The weight reduction leads the manipulator to become more flexible and more difficult to control accurately. The manipulator being a distributed parameter system, it is highly non-linear in nature. Control algorithms will be required to compensate for both the vibrations and static deflections that result from the flexibility. This provides a challenge to design control techniques that: a) gives precise control of desired parameters of the system in desired time, b) cope up with sudden changes in the bounded system parameters, c) gives control on unmodeled dynamics in the form of perturbations, and d) robust performance. Conventional control system design is generally a trial and error process which is often not capable of controlling a process, which varies significantly during operation. Thus, the quest for robust and precise control led researchers to derive various control theories. Adaptive control is one of these research fields that is emerging as timely and important class of controller design. Area much argued about adaptive control is its simplicity and ease of
منابع مشابه
Adaptive Inverse Control of Flexible Link Robot Using ANFIS Based on Type-2 Fuzzy
This paper presents a novel adaptive neuro-fuzzy inference system based on interval Gaussian type-2 fuzzy sets in the antecedent part and Gaussian type-1 fuzzy sets as coefficients of linear combination of input variables in the consequent part. The capability of the proposed ANFIS2 for function approximation and dynamical system identification is remarkable. The structure of ANFIS2 is very sim...
متن کاملDirect adaptive fuzzy control of flexible-joint robots including actuator dynamics using particle swarm optimization
In this paper a novel direct adaptive fuzzy system is proposed to control flexible-joints robot including actuator dynamics. The design includes two interior loops: the inner loop controls the motor position using proposed approach while the outer loop controls the joint angle of the robot using a PID control law. One novelty of this paper is the use of a PSO algorithm for optimizing the contro...
متن کاملPlanning and Control of Two-Link Rigid Flexible Manipulators in Dynamic Object Manipulation Missions
This research focuses on proposing an optimal trajectory planning and control method of two link rigid-flexible manipulators (TLRFM) for Dynamic Object Manipulation (DOM) missions. For the first time, achievement of DOM task using a rotating one flexible link robot was taken into account in [20]. The authors do not aim to contribute on either trajectory tracking or vibration control of the End-...
متن کاملadaptive control of two-link robot manipulator based on the feedback linearization method and the proposed neural network
This paper proposes an adaptive control method based on the feedback linearization technique and a proposed neural network, for tracking and position control of an industrial manipulator. At first, it is assumed that the dynamics of the system are known and the control signal is constructed by the feedback linearization method. Then to eliminate the effects of the uncertainties and external d...
متن کاملCONTROL OF FLEXIBLE JOINT ROBOT MANIPULATORS BY COMPENSATING FLEXIBILITY
A flexible-joint robot manipulator is a complex system because it is nonlinear, multivariable, highly coupled along with joint flexibility and uncertainty. To overcome flexibility, several methods have been proposed based on flexible model. This paper presents a novel method for controlling flexible-joint robot manipulators. A novel control law is presented by compensating flexibility to form a...
متن کاملA Flexible Link Radar Control Based on Type-2 Fuzzy Systems
An adaptive neuro fuzzy inference system based on interval Gaussian type-2 fuzzy sets in the antecedent part and Gaussian type-1 fuzzy sets as coefficients of linear combination of input variables in the consequent part is presented in this paper. The capability of the proposed method (we named ANFIS2) for function approximation and dynamical system identification is remarkable. The structure o...
متن کامل